Rebound Control

Pictured: Marc-Andre Fleury makes an amazing save at the end of game 7 to win the 2009 Stanley Cup, moments after giving up a rebound. Did he need to make this dramatic save? Should he be credited for it? Looking at the probability of a rebound on the original shot can help lend context.

A few years ago I was a seasoned collegiate goaltender and a raw undergrad Economics major. This was a dangerous combination. When my save percentage fell from something that was frankly pretty good to below average, I turned to an overly theoretical model to help explain this slip in measured performance, for my own piece of mind and general curiosity. The goal was to measure goaltending performance by controlling for the things out of their control, like team defense. Specifically, this framework would properly account for shot quality (of course) and adjust for rebounds, by not giving goalies credit for saves made on preventable rebounds . The former considered things out of the goalies control, the later considers what is actually in the goalies control. Discussing the model with my professor it was soon clear that I included a lot of components that didn’t have available data, such as pre-shot puck movement and/or some sort of traffic index. However, this hasn’t stopped analysts, including myself, from creating expected goals models with the data available publicly. But a public and comprehensive expected goal model remains elusive.

Despite their imperfections, measuring goaltender performance with expected goals are an improvement over raw save percentage and gaining some traction. However, rebounds as they relate to a comprehensive goaltending metric has garnered less research. Prior rebound work by Robb Pettapiece, Matt Cane, and Michael Schuckers suggests preventing rebounds is not a highly repeatability skill, though focusing on pucks frozen might might contain more signal. Building on some of these concepts I hope to give rebound rates some more context by attempting to predict them and explore their effect on a comprehensive goaltending metric consistent with my 2017 RITHAC presentation.[1]

Unfortunately there is nothing to tell us whether a rebound is a “bad” or preventable rebound, so my solution was to create an expected rebounds model using the same framework used to develop an expected goal models. The goal is the same, compare observed goals and rebounds relative to what we would expect a league average goaltender might surrender controlling for as much as we can.

Defense Independent Performance

One of the first iterations and applications of an expected goals model was Michael Schuckers’ Defense Independent Goalie Rating (DIGR). This framework has been borrowed by other analysts, myself included. The idea being the shots goalies face are largely out of their control, they can’t help if they face 3 breakaways in a period or Ovechkin one-timers from the slot. However, goalies can assert some control over rebounds. How much and if this makes a difference is something we will explore.

Regardless of the outcome of the analysis, logic would suggest we discount credit we give goaltenders for facing shots that they could have or should have prevented. Bad rebounds that turn into great saves should be evaluated from the original shot, rather than taking any follow-up shots as a given.

Luoooooong rebound

Rebounds Carry Weight

It’s important to note that rebound shots results in higher observed probability of a goal, which makes sense, and expected goal models generally reflect this. However, this disproportionate amount of an expected goal can be confounding when ‘crediting’ goalie for a rebound opportunity against when it could have been prevented. Looking at my own expected goal model, rebounds account for about 3.2% of all shots, but 13% of total expected goals. This ratio of rebounds being about 4 times as dangerous is supported by observed data as well. Shooting percentage on rebounds is about 27%, while it is 5.8% on original shots.

In the clip above and using hypothetical numbers, Luongo (one of my favorite goalies, so not picking on him here) gives up a bad rebound on a wrist shot from just inside the blueline, with an expected goal (xG) value of ~3%, but the rebound shot, due to the calculated angular velocity of the puck results in a goal historically ~30% of the time. Should this play be scored as Luongo preventing about 1/3 of a goal (~3% + ~30%)[2]?

What if I told you the original shot resulted in a rebound ~2% of the time and that the average rebound is converted to a goal ~25% of the time? Wouldn’t it make more sense to ignore the theatrical rebound save and focus in on the original shot? That’s why I’d rather calculate that Luongo faced a 3.5% chance of a goal, rather than ~33% chance of goal. An xG of 3.5% is based on the  3% of the original shot going in PLUS 0.5% chance of a rebound going in (2% chance of rebound times ~25% chance of goal conditional on rebound), and no goal was scored.

Method xG Saved/Prevented Goals Given Up Total xG Faced xG 1st shot xG 2nd Shot Calculation Method
Raw xG Calculation 33.0% 0 33.0% 3% 30% Historical probability of goal *given* rebound occurred
Rebound Adjusted 3.5% 0 3.50% 3% 0.50% 𝑃(𝐺𝑜𝑎𝑙)=𝑃(𝐺𝑜𝑎𝑙│𝑅𝑒𝑏𝑜𝑢𝑛𝑑)∗𝑃(𝑅𝑒𝑏𝑜𝑢𝑛𝑑)

0.05% = 25% * 2%

Removing Credit Where Credit Isn’t Due

As to not give goaltenders credit for saves made on ‘bad’ rebound shots we can do the following:

  1. Strip out all xG on shots immediately after a rebound (acknowledging the actual goals that occur on any rebounds, of course)
  2. Assign a probability of a rebound to each shot
  3. Convert the probability of a rebound to a probability of a goal (xG) by multiplying the expected rebound (xRebound) by the probability of a goal on rebound shots, about 27%. This punishes ‘bad’ or preventable rebounds more than shots more likely to result in rebounds. Using similar logic to an expected goals model, some goalies might face shots more likely to become rebounds than others. By converting expected rebounds (xRebounds) to xG, we still expect the total number of expected goals to equal the total number of actual goals scored even after removing xG from rebounds.

To do this we can create a rebound probability model using logistic regression and a similar set of features as an xG model. My most recent model has an out-of-sample area under the ROC curve of 0.68, where 0.50 is random guessing (or assuming every shot has a 3.2% chance of rebound, which is the historical rate). Compare this the current xG model out-of-sample ROC AUC of 0.78, suggesting rebounds are tougher to reliably predict than goals (and we’re not sure there either). A weak rebound model is fine, reflecting the idea an given shot has some probability of turning into a dangerous rebound, maybe a bad bounce or goaltender mishap or fortunate forward, we just have a tough time knowing when.

This does make some sense though, unlike goals where the target is very clear (put the puck in the net), rebounds are less straight forward, they require the puck to hit the goalie and find a opposing players stick before the defense can knock it away. Some defensemen might be able to generate rebounds from point shots more than random, but despite what they might tell you after the fact, players are generally trying to score on the original shot, not create a rebound specifically.

It is also true that goals are targeted, defined events (the game stops, lights go on, goalie feels shame, and the score keeper records it), whereas rebounds escape an obvious definition. Hockey analytics have generally used shots <= 2 seconds from the shot prior, so let’s explore the data behind that reasoning now.

Quickly: What is a rebound?

It’s important to go back and establish what a rebound actually is, without the benefit of watching every shot from every game. We would expect the average shot off of a rebound to have a higher chance of being a goal than a non-rebound shot (all else being equal) since we know the goalie has less time to be able to get set for the shot. And just hypothesizing, it probably takes the goalie and defenders a couple seconds to recover from a rebound. To test the ‘time since last shot’ hypothesis, we can look in the data to see where the observed probability of a goal begins to normalize.

Strike while the iron is hot

Shots within 2 seconds or less of the original shot are considerably more likely to result in goals than shots than otherwise. There is some effect at a 3 second lag, and certainly some slow-fingered shot recorders around the league might miss a ‘real’ rebound here and there, but the naive classifier of 0-2 seconds between shots is probably the best we can do with limited public data. At 3 seconds, we have lost about half of the effect.

Model Results

Can your favorite goalie prevent rebound compared to what would be expected? If so great, they will be credited with excess xG (xRebounds multiplied by the observed probability of rebound goals 27%) without having to face a bunch of chaotic and dangerous rebound shots. If they give up more rebounds than average, their xG won’t be inflated by a bunch of juicy rebounds, rather replaced by a more modest xG amount indicative of league average goaltending considering what we know about the shots they’re facing.

Which goalies are best at consistently preventing rebounds according to the model? Looking at expected rebound rates compared to actual rebound rates (below), suggests maybe Pekka Rinne, Petr Mrazek, and Tuukka Rask have a claim at consistently being able to prevent rebounds. Rinne has been well documented to have standout rebound control, so we are at least directionally reaching the same conclusions through prior analyses and observations. However, adding error bars consistent with +/- 2 standard deviations dull this claim a little.

Rebounds happen to everyone…

Generally, the number of rebounds given up by a goalie over the season loosely reflect what the model predicts. The ends of the spectrum being Rinne with great rebound control in 2011-12 and Marc-Andre Fleury in giving up almost 40 more rebounds than expected in 2016-17. Interesting, Pittsburgh has some of the worst xGA/60 metrics in the league that year and ended up winning the Cup anyway. High rebound rates by both goalies (Murray’s rebound rate was about 1% higher than expected himself) definitely contributed to the high xGA/60 number, perhaps making their defense look worse than it was.

..some more than others

Goal Probability Assumptions

I’ll admit we’re making a pretty big assumption that if a errant puck is controlled and a rebound shot is taken the probability of a goal will be 27%. Maybe some goalies are better than consistently making rebound saves than other goalies, either through skill or ability to put rebounds in relatively low danger areas. Below plots, with +/- standard deviation error bars observed goal % (1 – save %) on rebound shots for goalies with at least 5 seasons since 2010-11.

Good Luck

Devan Dubnyk and Carey Price have been consistent in conceding fewer than 27% (the average for the entire sample) of rebound shots as goals. However, considering the standard deviation we can expect from this distribution given the sample size, this may not be ‘skill.’ It’s also important to explore if their rebound shots are less dangerous than average, whether due to skill, luck, or team defensive structure. This appears to be the case, when adjusted for the xG model, they perform about as well as the model predicts in some seasons, and exceed it in others. Certainly not by enough to suggest their rebounds should be treated any differently going forward.

Looking at intra-goalie performance correlation supports the idea that making saves on rebounds is a less repeatable skill than the original shots. From 2014-2017, splitting each goalies shots faced into random halves, the correlation between the split 1 performance and split 2 is about 0.43. On rebound shots, this correlation falls to 0.24, suggesting that there is considerably less signal. While there is some repeatable skill, its not enough to treat any goalies differently in our model post-rebound due to remarkable ability (or inability) to make saves on rebounds.

Turn Up the Luck

Controlling Rebounds, Summary

To reiterate, the problem:

  • Expected goal models are valuable in measuring goaltending performance, but rebounds are responsible for a disproportionate share of expected goals, which the goalie has some control over.

My solution:

  • Remove all expected goals credited to the goalie on rebound shots.
  • Develop a logistic regression model predicting rebounds, the output of which can be interpreted as each shots probability of a rebound.
  • Explore goalie-level ability to make saves on rebounds shots, to support the assumption that 27% of rebound shots will result in a goal, regardless of goalie.
  • Replace ‘raw’ expected goals with an expect goal amount based on the probability of goal PLUS probability of a rebound shot multiplied by the historical observed goal % on rebound shots (27%), considering initial, non-rebound shots only.

Finally it’s important to ask, does this framework help predict future performance? Or it just extra work for nothing?

The answer appears to be yes. My RITHAC work attempted to project future goaltender performance by testing different combinations of  metrics (xG raw, xG adjusted for rebounds, xG with a Bayesian application, raw save %) and parameters (age regressors, Bayesian priors, lookback seasons). Back testing past seasons, the metrics adjusted for rebounds performed better than the same metrics using a raw expected goal metric as its foundation.

Corralling Rebounds

This supports the idea that rebounds, particularly in expected goals models, can confound goaltender analysis by crediting goaltenders disproportionately for chances that they have some control over. In order to reward goalies for controlling rebounds and limiting subsequent chances, goalies can be measured against the amount of goals AND rebounds a league average goalie would concede – which is truer to the goal of creating a metric that controls for team defense and focuses on goaltender performance independent of team quality. Layering in this rebound adjustment increases the predictive power of expected goal metrics.

The limitations of this analysis include the unsatisfactory definition of a rebound and the need for an expected rebound model (alternatively a naive 3.2% of shot attempts result in rebounds can be used). Another layer of complexity might loose some fans and fanalysts. But initial testing suggest that rebound adjustment adds incremental predictive power enough to justify it inclusion in advanced goaltending analysis where the goal is to measure goaltender performance independent of team defense with the publicly data available.

But ask yourself, your coach, your goalie, whoever: should a goalie get credit for a save he makes on a rebound, if he should have controlled it? Probably not.

Thanks for reading. I hope get goalie-season xRebound/Rebound data updated and posted for the new model and 2017-18 season. A (worse) model and data prior to this season can be found here. Any custom requests ping me at @crowdscoutsprts or

Code for this analysis built off a scraper built by @36Hobbit which can be found at

I also implement shot location adjustment outlined by Schuckers and Curro and adapted by @OilersNerdAlert. Any implementation issues are my fault.

My code for this and other analyses can be found on my Github, including the feature generation and modeling of current xG and xRebound models.


[1] Pettapiece converted rebounds prevented to goals prevented, but with respect to rebound rate only and to my knowledge did not expand to build into a comprehensive performance metric. (

[2] Rebound xG actually can’t be added to the original shot like this since we are basically saying the original shot has a 3% chance of going in, so the rebound will only happen 97% of the time. The probability of the rebound goal in the case is 97% * 30%, or 29.4%. But for simplicity I’ll consider the entire play to be a goal 33.3% of the time. The original work and explainer by Danny Page: (

Advanced Goaltending Metrics

Preamble: The following is a paper I wrote while in college about 6 years ago. It is very theoretical, without understanding the realities of data quality in the real world. However, it still reflects my general attitude toward how goaltending performance should be measured, manifesting itself in my current Expected Goals model.


How new metrics concerning hockey’s most important position can offer critical insights into goaltender performance, development, and value.



During the last 20 years, the goaltending position has changed more than any other position in hockey. Advances in equipment and training have raised the benchmark for expected goaltender performance. Teams promptly began investing in the position in the mid-90’s as a new breed of goaltender found success in the NHL. From 1994-2006 an average of almost 3 goaltenders were selected in the 1st round. Of these 37 highly touted goaltenders, none had won a Vezina trophy as of 2011. With this surprising lack of success, teams began to avoid using high draft picks on goaltenders—from 2007-2011 less than 1 goaltender was drafted in the 1st round annually.

Teams will continue to invest less in the goaltending position for a number of reasons. First, it is a matter of economics—the supply of good goaltenders has increased, decreasing their value. Initially, the demand for goaltenders drove their stock up, but teams eventually realized that they struggle to correctly value goaltending prospects. Subsequently, many of the leagues most successful goaltenders during this period were late round picks. Outside of the legendary Martin Brodeur, the last 3 Vezina trophy winners were drafted in the 5th, 5th, and 9th rounds. In fact, in the last decade the only goaltenders to make the NHL 1st or 2nd All-Star teams that were drafted in the 1st round were Roberto Luongo and, of course, Martin Brodeur. Lastly, goaltenders appear to mature later, which means teams want to invest less in them, especially considering the new Collective Bargaining Agreement allows players to become free agents earlier. In summary, there are more good goaltenders, they are generally incorrectly valued, and teams are hesitant to develop goaltenders through the draft, preferring high-priced, experienced goaltenders.

These factors create a unique opportunity for teams that can properly value goaltenders. Goaltending is still a critical part of any team, but it can be acquired without giving up valuable assets. Goaltenders are generally selected later in the draft, exchanged for less than their intrinsic value via trade, or require no assets to acquire through free agency and from waivers. Solid NHL goaltending should ideally come at a friendly cap hit, since the premium for the highest paid goaltenders is diminishing. Another trend is evident: some of the most successful teams are using strong backups throughout the regular season to compliment their starters and gain a post-season advantage—since the 2005 lockout the average Stanley Cup winning goalie has played less than 50 regular season games. Teams can no longer hope to find a franchise goaltender and maintain elite performance by locking them up to a rich, long-term contract without possessing the option of cheaper alternatives. The inability for teams to objectively understand the difference in performance between a goaltender with a $5 million salary and a $1.5 million salary is curious—goaltending is the only position in hockey that performance could be measured in a largely empirical way, analogous to how baseball has managed to successfully employ advanced metrics to better measure player performance. Teams that could use goaltending metrics that more accurately evaluate goaltenders would have an enormous advantage to acquire and retain elite level goaltending at an economical price.

The Estimated Save Percentage Index Model

The most common metric used to measure goaltending performance is save percentage, the number of saves as a percentage of total shots on goal. This metric is fundamentally flawed. To more accurately understand the quality of a particular goaltender, save percentage must be more sophisticated. This is possible because the goaltending position has two important prerequisites that make performance the most quantifiable in hockey. First, the result is absolute: any shot on goal is either stopped or results in a goal. Second, the position is passive: the difficulty to the goaltender is generally dictated by the game in front of him, except for rebound control and puck handling, which can be addressed later in the model.

The Expected Save Percentage (ES% Index) is a predictor of a goaltenders success based on a number of inputs that assigns the individual difficulty of each shot the goaltender faces. The inputs used in the model are shot location, puck visibility, and the rate at which the puck changes angle before or during the shot. The model assumes the goaltender has NHL quality blocking-width, positioning, lateral movement, and reflexes. Then, through an array of formulas, the model determines the expected save percentage for each shot on goal given the inputs. Once these expected save percentages are aggregated over a game, or over a season, we can see how the goaltender’s actual save percentage compares with the expected save percentage and compare them to their peers. The best goaltenders will consistently exceed the predicted save percentage whether they are facing 20 high quality shots or 40 lower quality shots. The Expected Save Percentage Index—the difference between real save percentage and expected save percentage—will measure the proficiency of the goaltender. The index can be tracked game-by-game and season-by-season. Since we are removing much of the fluctuation in team performance we will have a much better idea of a goaltender’s consistency—an attribute critical to NHL success that can be lost in the potentially misleading statistics that are currently employed.

The inputs have been selected for simplicity and versatility. The most obvious is shot location—the closer the shot, the more likely it will be a goal. Assuming the average NHL shot is about 90 miles/hour and a NHL goaltender has a reaction time of .11 seconds, the Expected Save Percentage increases greatly once the shot is from a distance of greater than 15 feet.  Inside of 15 feet it assumes the goaltender can cover around 70%- 80% of the net through size and positioning, and the distance model reflects this assumption. Location can also allow the model to determine the shot angle and net available to the shooter, two other factors that are automatically worked into the model. If applicable, visibility is a binary input determining whether the goaltender has a chance to see the puck. Again, since we are assuming NHL quality goaltending, there is no ‘half-screen’ or ‘distraction.’ If the goaltender has an opportunity to see the puck, they are expected to gain a sightline to the puck. If they are completely screened, the expected save percentage is lowered as a function of the net available when the shot is taken—the better angle, the more dangerous the screen. Lastly, the model factors in the rate of the change in the angle of the puck when the shot as taken, if applicable. This way we can discount the expected save percentage if the shot is a one-timer, deke, passing play, or even a deflection to better reflect the difficulty of a shot against. The model assumes NHL quality lateral movement, edge control, and post save recovery. At lower levels, where puck movement is slower, goaltenders will have to put up higher real save percentages to maintain an ES% Index that predicts NHL skills.

These inputs create an admittedly arbitrary, yet sophisticated, expected save percentage. The formulas can be retrofitted as more data is collected to move closer to a universally accurate expected save percentage—ideally the median ES% Index would be 0. The data can be then broken up into three categories, shots with no screen or movement, shots that are screened, and shots where the puck is moving laterally as it is released. Breaking each shot into individual components will make it possible to track and eventually acquire objective data, replacing the placeholder formulas with actual NHL results. However, as it stands now, the expected save percentage is a benchmark, and it is the discrepancy between the realized and expected save percentage that will be the true measure of individual performance. Shot placement may seem like a troublesome omission from the model, however since the model is built on aggregated averages we can account for the complete distribution of shots put on net. NHL quality defense generally takes away time and space from shooters, limiting their ability to place the puck wherever they desire. Teams are not necessarily inclined to giving up shots in a particular place in the net, but weaker teams are prone to giving up shots from more dangerous locations on the ice. In this way shot placement is indirectly built into the expected save percentage: a shot from 10 feet out the shooter has a much greater chance of hitting a target, say high glove, than a shot from 20 feet.

Win Contribution

The ES% Index measures goaltender performance in a vacuum, comparing actual performance to how we would expect him to perform in a given situation. However, the goaltender can influence the amount of shots they face through rebound control and effective puck handling. Tracking these occurrences will allow the model to adjust the expected save percentage further. Easier than average shots that result in a rebound will lead to the successive shot not being factored into the model. This is analogous to saying the resulting shot should not have happened. Difficult shots that result in rebounds will take into consideration the difficulty of both shots when assigning expected save percentage to the potentially ‘preventable’ rebound shot. Whenever a goaltender handles the puck and it results in the puck directly clearing the zone, it will be assume the goaltender prevented a shot a certain percentage of the time. By adding the potential shots and removing preventable shots to the actual shot total we will have a good idea of how the goaltender is helping their team and influencing the game.

With the expected save percentage and expected shots against, we can manufacture an expected goals against for each game. We can compare expected goals against to the goal support the goaltender received and determine whether or not the goaltender should have won the game. If the game should have been won based on the actual goals for and expected goals against, but was not, this will be a contributed loss. Conversely, if it was predicted the team should have lost, yet won, this will be a contributed win. So we can remove the bias toward goaltenders on bad teams—who have more opportunity to register contributed wins—we can measure the number of potential contributed wins and losses and compare them to the actual contributed wins and losses.

How does this model predict future goaltending performance?

This analysis allows an NHL team to gain a concise, quantified measurement of goaltending performance across leagues and time. It will more accurately identify goaltending proficiency and consistency. It can be adjusted from league to league as the goaltender advances and will better predict future success as the database grows. The model automatically assumes each goaltender has NHL size, speed, and positioning, so if the goaltender can consistently perform better than his peers, then they will likely continue to outperform them at higher levels. This can apply to a late round pick playing on a weak team in Europe or a college goaltender discredited for being on a strong defensive team. Since the ES% Index can be broken into components—stationary shots, screened shots, and moving shots—it will be easy to identify weaknesses that may be hidden by a specific team. For example, a goalie with poor lateral movement on a team that limits puck movement might perform well by traditional standards, but if the ES% Index on shots with puck movement is below average, chances are they will be exposed at the next level. There is a very real advantage to employing increasingly accurate goaltending metrics that other teams are not using to value goaltenders. It can also be broken up into individual components lending itself to the in-depth analysis of goaltending prospects, opposition goaltenders, and even the performance of other players on the ice. While the ES% Index will likely have limitations, predicting the development and value of goaltenders has not improved during an era when the quality of goaltending has increased dramatically. Therefore, a more accurate metric will almost certainly improve the valuation of each goaltender and offer critical insights into their development.

Other Considerations

While advanced goaltending metrics can aid management decisions, they can also lend coaches a helpful perspective when preparing for games. The objective ES% Index will help explain some of the volatility in goaltender performance. Coaches do not always understand the subtleties of the position, their only concern lies in the proficiency of the goaltender in preventing goals—exactly the intent of the ES% Index. It can also be used as a pre-scout for opposing goaltenders. Situational success rates for each NHL goalie are tracked through the season, offering a strategic advantage to the coaching staff and players. If an otherwise successful goaltender is performing below the norm on shots with puck movement, then this is a clear indication to move the puck before shooting. Ability can be judged based on data from an entire season rather than anecdotal observations. This is advantageous because the goaltending position is inconsistent by nature, one bad bounce or mental lapse can be the difference between a good game and a bad game. Watching a select few games of a goaltender will make it difficult to judge their true ability—no doubt part of the reason teams struggle to value goaltenders at the draft. It can also compliment scouting reports. If a scout sees a particular trend or weakness in a goaltenders game, there will be data available which can be used to verify or contradict the scout’s claims.

Additionally, goaltender performance can influence the statistics of players at other positions. Both a defenseman playing if front of poor goaltending and a goal scorer who faced an unlikely sequence of superb goaltending are going to have their statistics skewed. Adjusting these statistics for goaltending performance will give management a clearer idea of why a certain player’s statistics might be deviating from their expectations. For example, the model can be expanded to measure the difference between even-strength expected goals for and expected goals against for each player over the course of the game based on the data already being recorded. This type of analysis is separate from the ES% Index, however having more accurate goaltending statistics would provide an organization another tool properly evaluate players and put the absolute best product on the ice.


No statistical analysis can replace comprehensive subjective evaluation that is performed by the most experienced hockey minds in the world. However, it can offer a fresh perspective and lend objective analysis to a position where contrarians can often be the most successful. The unorthodox goaltending styles of Tim Thomas and Dominik Hasek have remarkably won 8 out of the last 17 Vezina trophies awarded. Not only were they drafted in the 9th and 10th rounds, respectively, they did not even become starting goaltenders until aged 32 and 29 despite their success outside of the NHL. Very few understood how they stopped the puck, but both men clearly prevented goals. It is my hope that employing more advanced goaltending metrics can remove the biases that exist and pinpoint goal prevention, the sole objective of a goaltender. Due to my extensive knowledge of the position as both a student and a coach, the model has been constructed to reflect the complex simplicity of the position—Where is shot from? Can I see it? Can I reach my optimal position?—while deducing the existence of attributes that are critical to NHL success: size, speed, positioning, lateral movement, and consistency. For these reasons, Expected Save Percentage Index and Win Contribution analysis manages to combine the qualitative and quantitative factors that are necessary to properly evaluate goaltenders, benefiting any team that employs these advanced metrics.

Expected Goals (xG), Uncertainty, and Bayesian Goalies

All xG model code can be found on GitHub.

Expected Goals (xG) Recipe

If you’re reading this, you’re likely familiar with the idea behind expected goals (xG), whether from soccer analytics, early work done by Alan RyderBrian MacDonald, or current models by DTMAboutHeart and Asmean, Corsica, Moneypuck, or things I’ve put up on Twitter. Each model attempts to create a probability of each shot being a goal (xG) given the shot’s attributes like shot location, strength, shot type, preceding events, shooter skill, etc. There are also private companies supplementing these features with additional data (most importantly pre-shot puck movement on non-rebound shots and some sort of traffic/sight-line metric) but this is not public or generated in the real-time so will not be discussed here.[1]

To assign a probability (between 0% and 100%) to each shot, most xG models likely use logistic regression – a workhorse in many industry response models. As you can imagine the critical aspect of an xG model, and any model, becomes feature generation – the practice of turning raw, unstructured data into useful explanatory variables. NHL play-by-play data requires plenty of preparation to properly train an xG model. I have made the following adjustments to date:

  • Adjust for recorded shot distance bias in each rink. This is done by using a cumulative density function for shots taken in games where the team is away and apply that density function to the home rink in case their home scorer is biased. For example (with totally made up numbers), when Boston is on the road their games see 10% of shots within 5 feet of the goal, 20% of shots within 10 feet of the goal, etc. We can adjust the shot distance in their home rink to be the same since the biases of 29 data-recorders should be less than a single Boston data-recorder. If at home in Boston, 10% of the shots were within 10 feet of the goal, we might suspect that the scorer in Boston is systematically recording shots further away from the net than other rinks. We assume games with that team result in similar event coordinates both home and away and we can transform the home distribution to match the away distribution. Below demonstrates how distributions can differ between home and away games, highlighting the probable bias Boston and NY Rangers scorer that season and was adjusted for. Note we also don’t necessarily want to transform by an average, since the bias is not necessarily uniform throughout the spectrum of shot distances.
home rink bias
No Place Like Home
  • Figure out what events lead up to the shot, what zone they took place in, and the time lapsed between these events and the eventual shot while ensuring stoppages in play are caught.
  • Limit to just shots on goal. Misses include information, but like shot distance contain scorer bias. Some scorers are more likely to record a missed shot than others. Unlike shots where we have a recorded event, and it’s just biased, adjusting for misses would require ‘inventing’ occurrences in order to adjust biases in certain rinks, which seems dangerous. It’s best to ignore misses for now, particularly because the majority of my analysis focuses on goalies. Splitting the difference between misses caused by the goalie (perhaps through excellent positioning and reputation for not giving up pucks through the body) and those caused by recorder bias seems like a very difficult task. Shots on goal test the goalie directly hence will be the focus for now.
  • Clean goalie and player names. Annoying but necessary – both James and Jimmy Howard make appearances in the data, and they are the same guy.
  • Determine the strength of each team (powerplay for or against or if the goaltender is pulled for an extra attacker). There is a tradeoff here. The coefficients for the interaction of states (i.e. 5v4, 6v5, 4v3 model separately) pick up interesting interactions, but should significant instability from season to season. For example, 3v3 went from a penalty-box filled improbability to a common occurrence to finish overtime games. Alternatively, shooter strength and goalie strength can be model separately, this is more stable but less interesting.
  • Determine the goaltender and shooter handedness and position from look-up tables.
  • Determine which end of the ice and what coordinates (positive or negative) the home team is based, using recordings in any given period and rink-adjusting coordinates accordingly.
  • Calculate shot distance and shot angle. Determine what side of the ice the shot is from, whether or not it is the shooters off-wing based on handedness.
  • Tag shots as rushes or rebound, and if a rebound how far the puck travelled and the angular velocity of the puck from shot 1 to shot 2.
  • Calculate ‘shooting talent’ – a regressed version of shooting percentage using the Kuder-Richardson Formula 21, employed the same way as in DTMAboutHeart and Asmean‘s xG model.

All of this is to say there is a lot going on under the hood, the results are reliant on the data being recorded, processed, adjusted, and calculated properly. Importantly, the cleaning and adjustments to the data will never be complete, only issues that haven’t been discovered or adjusted for yet. There is no perfect xG model, nor is it possible to create one from the publicly available data, so it is important to concede that there will be some errors, but the goal is to prevent systemic errors that might bias the model. But these models do add useful information regular shot attempt models cannot, creating results that are more robust and useful as we will see.

Current xG Model

The current xG model does not use all developed features. Some didn’t contain enough unique information, perhaps over-shadowed by other explanatory variables. Some might have been generated on sparse or inconsistent data. Hopefully, current features can be improved or new features created.

While the xG model will continue to be optimized to better maximize out of sample performance, the discussion below captures a snapshot of the model. All cleanly recorded shots from 2007 to present are included, randomly split into 10 folds. Each of the 10 folds were then used a testing dataset (checking to see if the model correctly predicted a goal or not by comparing it to actual goals) while the other 9 corresponding folders were used to train the model. In this way, all reported performance metrics consist of comparing model predictions on the unseen data in the testing dataset to what actually happened. This is known as k-fold cross-validation and is fairly common practice in data science.

When we rank-order the predicted xG from highest to lowest probability we can compare the share of goals that occur to shots ordered randomly. This gives us a gains chart, a graphic representation of the how well the model is at finding actual goals relative to selecting shots randomly. We can also calculate the Area Under the Curve (AUC), where 1 is a perfect model and 0.5 is a random model. Think of the random model in this case as shot attempt measurement, treating all shots as equally likely to be a goal. The xG model has an AUC of about 0.75, which is good, and safely in between perfect and random. The most dangerous 25% of shots as selected by the model make up about 60% of actual goals. While there’s irreducible error and model limitations, in practice it is an improvement over unweighted shot attempts and accumulates meaningful sample size quicker than goals for and against.

gains chart
Gains, better than random

Hockey is also a zero-sum game. Goals (and expected goals) only matter relative to league average. Original iterations of the expected goal model built on a decade of data show that goals were becoming dearer compared to what was expected. Perhaps goaltenders were getting better, or league data-scorers were recording events to make things look harder than they were, or defensive structures were impacting the latent factors in the model or some combination of these explanations.

Without the means to properly separate these effects, each season receives it own weights for each factor. John McCool had originally discussed season-to-season instability of xG coefficients. Certainly this model contains some coefficient instability, particularly in the shot type variables. But overall these magnitudes adjust to equate each seasons xG to actual goals. Predicting a 2017-18 goal would require additional analysis and smartly weighting past models.

Coefficient Stability
Less volatile than goalies?

xG in Action

Every shot has a chance of going in, ranging from next to zero to close to certainty.  Each shot in the sample is there because the shooter believed there was some sort of benefit to shooting, rather than passing or dumping the puck, so we don’t see a bunch of shots from the far end of the rink, for example. xG then assigns a probability to each shot of being a goal, based on the explanatory variables generated from the NHL data – shot distance, shot angle, is the shot a rebound?, listed above.

Modeling each season separately, total season xG will be very close to actual goals. This also grades goaltenders on a curve against other goaltenders each season. If you are stopping 92% of shots, but others are stopping 93% of shots (assuming the same quality of shots) then you are on average costing your team a goal every 100 shots. This works out to about 7 points in the standings assuming a 2100 shot season workload and that an extra 3 goals against will cost a team 1 point in the standings. Using xG to measure goaltending performance makes sense because it puts each goalie on equal footing as far as what is expected, based on the information that is available.

We can normalize the number of goals prevented by the number of shots against to create a metric, Quality Rules Everything Around Me (QREAM), Expected Goals – Actual Goals per 100 Shots. Splitting each goalie season into random halves allows us to look at the correlation between the two halves. A metric that captures 100% skill would have a correlation of 1. If a goaltender prevented 1 goal every 100 shots, we would expect to see that hold up in each random split. A completely useless metric would have an intra-season correlation of 0, picking numbers out of a hat would re-create that result. With that frame of reference, intra-season correlations for QREAM are about 0.4 compared to about 0.3 for raw save percentage. Pucks bounce so we would never expect to see a correlation of 1, so this lift is considered to be useful and significant.[2]

intra-season correlations
Goalies doing the splits

Crudely, each goal prevented is worth about 1/3 of a point in the standings. Implying how many goals a goalie prevents compared to average allows us to compute how many points a goalie might create for or cost their team. However, a more sophisticated analysis might compare goal support the goalie receives to the expected goals faced (a bucketed version of that analysis can be found here). Using a win probability model the impact the goalie had on win or losing can be framed as actual wins versus expected.


xG’s also are important because they begin to frame the uncertainty that goes along with goals, chance, and performance. What does the probability of a goal represent? Think of an expected goal as a coin weighted to represent the chance that shot is a goal. Historically, a shot from the blueline might end up a goal only 5% of the time. After 100 shots (or coin flips) will there be exactly 5 goals? Maybe, but maybe not. Same with a rebound from in tight to the net that has a probability of a goal equal to 50%. After 10 shots, we might not see 5 goals scored, like ‘expected.’ 5 goals is the most likely outcome, but anywhere from 0 to 10 is possible on only 10 shots (or coin flips).

We can see how actual goals and expected goals might deviate in small sample sizes, from game to game and even season to season. Luckily, we can use programs like R, Python, or Excel to simulate coin flips or expected goals. A goalie might face 1,000 shots in a season, giving up 90 goals. With historical data, each of those shots can be assigned a probability of a being a goal. If the average probability of a goal is 10%, we expect the goalie to give up 100 goals. But using xG, there are other possible outcomes. Simulating 1 season based on expected goals might result in 105 goals against. Another simulation might be 88 goals against. We can simulate these same shots 1,000 or 10,000 times to get a distribution of outcomes based on expected goals and compare it to the actual goals.

In our example, the goalie possibly prevented 10 goals on 1,000 shots (100 xGA – 90 actual GA). But they also may have prevented 20 or prevented 0. With expected goals and simulations, we can begin to visualize this uncertainty. As the sample size increases, the uncertainty decreases but never evaporates. Goaltending is a simple position, but the range of outcomes, particularly in small samples, can vary due to random chance regardless of performance. Results can vary due to performance (of the goalie, teammates, or opposition) as well, and since we only have one season that actually exists, separating the two is painful. Embracing the variance is helpful and expected goals help create that framework.

It is important to acknowledge that results do not necessarily reflect talent or future or past results. So it is important to incorporate uncertainty into how we think about measuring performance. Expected goal models and simulations can help.

simulated seasons
Hackey statistics

Bayesian Analysis

Luckily, Bayesian analysis can also deal with weighting uncertainty and evidence. First, we set a prior –probability distribution of expected outcomes. Brian MacDonald used mean Even Strength Save Percentage as prior, the distribution of ESSV% of NHL goalies. We can do the same thing with Expected Save Percentage (shots – xG / shots), create a unique prior distribution of outcome for each goalie season depending on the quality of shots faced and the sample size we’ll like to see. Once the prior is set, evidence (saves in our case) is layered on to the prior creating a posterior outcome.

Imagine a goalie facing 100 shots to start their career and, remarkably, making 100 saves. They face 8 total xG against, so we can set the Prior Expected Save% as a distribution centered around 92%. The current evidence at this point is 100 saves on 100 shots, and Bayesian Analysis will combine this information to create a Posterior distribution.

Goaltending is a binary job (save/goal) so we can use a beta distribution to create a distribution of the goaltenders expected (prior) and actual (evidence) save percentage between 0 and 1, like a baseball players batting average will fall between 0 and 1. We also have to set the strength of the prior – how robust the prior is to the new evidence coming in (the shots and saves of the goalie in question). A weak prior would concede to evidence quickly, a hot streak to start a season or career may lead the model to think this goalie may be a Hart candidate or future Hall-of-Famer! A strong prior would assume every goalie is average and require prolonged over or under achieving to convince the model otherwise. Possibly fair, but not revealing any useful information until it has been common knowledge for a while.

bayesian goalie
Priors plus Evidence

More research is required, but I have set the default prior strength of equivalent to 1,000 shots. Teams give up about 2,500 shots a season, so a 1A/1B type goalie would exceed this threshold in most seasons. In my goalie compare app, the prior can be adjusted up or down as a matter of taste or curiosity. Research topics would investigate what prior shot count minimizes season to season performance variability.

Every time a reported result actives your small sample size spidey senses, remember Bayesian analysis is thoroughly unimpressed, dutifully collecting evidence, once shot at a time.


Perfect is often the enemy of the good. Expected goal models fail to completely capture the complex networks and inputs that create goals, but they do improve on current results-based metrics such as shot attempts by a considerable amount.  Their outputs can be conceptualized by fans and players alike, everybody understands a breakaway has a better chance of being a goal than a point shot.

The math behind the model is less accessible, but people, particularly the young, are becoming more comfortable with prediction algorithms in their daily life, from Spotify generating playlists to Amazon recommender systems. Coaches, players, and fans on some level understand not all grade A chances will result in a goal. So while out-chancing the other team in the short term is no guarantee of victory, doing it over the long term is a recipe for success. Removing some the noise that goals contain and the conceptual flaws of raw shot attempts helps the smooth short-term disconnect between performance and results.

My current case study using expected goals is to measure goaltending performance since it’s the simplest position – we don’t need to try to split credit between linemates. Looking at xGA – GA per shot captures more goalie specific skill than save percentage and lends itself to outlining the uncertainty those results contain. Expected goals also allow us to create an informed prior that can be used in a Bayesian hierarchical model. This can quantify the interaction between evidence, sample size, and uncertainty.

Further research topics include predicting goalie season performance using expected goals and posterior predictive distributions.


[1]Without private data or comprehensive tracking data technology analysts are only able to observe outcomes of plays – most importantly goals and shots – but not really what created those results. A great analogy came from football (soccer) analyst Marek Kwiatkowski:

Almost the entire conceptual arsenal that we use today to describe and study football consists of on-the-ball event types, that is to say it maps directly to raw data. We speak of “tackles” and “aerial duels” and “big chances” without pausing to consider whether they are the appropriate unit of analysis. I believe that they are not. That is not to say that the events are not real; but they are merely side effects of a complex and fluid process that is football, and in isolation carry little information about its true nature. To focus on them then is to watch the train passing by looking at the sparks it sets off on the rails.

Armed with only ‘outcome data’ rather than comprehensive ‘inputs data’ analyst most models will be best served with a logistic regression. Logistic regression often bests complex models, often generalizing better than machine learning procedures. However, it will become important to lean on machine learning models as reliable ‘input’ data becomes available in order to capture the deep networks of effects that lead to goal creation and prevention. Right now we only capture snapshots, thus logistic regression should perform fine in most cases.

[2] Most people readily acknowledge some share of results in hockey are luck. Is the number closer to 60% (given the repeatable skill in my model is about 40%), or can it be reduced to 0% because my model is quite weak? The current model can be improved with more diligent feature generation and adding key features like pre-shot puck movement and some sort of traffic metric. This is interesting because traditionally logistic regression models see diminishing marginal returns from adding more variables, so while I am missing 2 big factors in predicting goals, the intra-seasonal correlation might only go from 40% to 50%. However, deep learning networks that can capture deeper interactions between variables might see an overweight benefit from these additional ‘input’ variables (possibly capturing deeper networks of effects), pushing the correlation and skill capture much higher. I have not attempted to predict goals using deep learning methods to date.

Goaltending—Game Theory, the Contrarian Position, and the Possibility of the Extreme

Preamble: The following is a paper I wrote while in college about 6 years ago. It is a slightly different approach and worse logic that I employ now, likely reflecting my attitude at the time – a collegiate goaltender with the illusion of control (hence goals were likely unpredictable events, else I would have stopped it). I have softened on this thinking, but still think the recommendation holds: goaltenders can outperform the average by mixing strategies and adding an element of unpredictability to their game.


How goaltender strategy and understanding randomness in hockey can lend insight into the success of truly elite goaltenders.


This paper outlines general strategies and philosophies behind goaltending, focusing on what makes great goaltenders great. Philosophy and goaltending make interesting partners—few athletic positions are continuously branded with a ‘style.’ Since such subjective labels are the norm for this position, then I feel quite comfortable using the terms rather broadly in a philosophical analysis. I will use loose generalisations to formulate a big-picture view of the position—how it has evolved, the type of goaltender that has consistently risen above their peers during this evolution, and why. Using game theory and attempting to clearly label player strategies is, at times, clumsy. Addressing the impact of unquantifiable randomness in hockey does not provide much comfort either. However, the purpose is to encourage further thought on the subject, and not provide a numerical, concise answer. It is a question that deserves more thought, at both the professional (evaluation and scouting) and grass-root (development and training) level. The question: what makes a consistently great goaltender?

Game Theory—The Evolution of Goaltending Strategy

Passive ‘blocking’ tactics have become prevalent among goaltenders at all levels. It is simple, statistically successful, and passive. There are tradeoffs like any strategy—the goaltender forfeits aggressiveness in order to force the shooter to make perfect shots to beat them. This ‘fated’ strategy exposes the goaltender to the extreme—most goals allowed are classified as ‘great plays’ or ‘lucky,’ certainly not the fault of the goaltender. However, there are other considerations. Shooters, no doubt, have adjusted their strategy based on this approach, further compromising the passive approach to goaltending. This means a disproportionate number of shooters will look to make ‘perfect’ shots—high and tight to the post against a blocking goaltender—despite the risk of missing the net entirely.

Historically, goaltenders did not have the luxury of light, protective equipment that is designed specifically to seal off any holes while in a butterfly position. Equipment lacking proper protection and effectiveness required goaltenders to spend the majority of the time on their feet while facing shots.

Player/Goaltender Interactions Then and Now

Game theory applications allow a crude analysis of the evolution of strategies between players and goaltenders. The numbers I use are arbitrary, however, they demonstrate an important strategic shift in goaltending tactics. First, let us assume that players have to decide whether to shoot high or low and always try to shoot for the posts. Simultaneously, goaltenders must choose to block or react.

In the age of primitive equipment, goaltenders were required to stand-up most of the time to make saves. From here we can make three assumptions in this ‘game’ or ‘shot’: 1) While blocking, the goaltender’s expected success rate was the same if the shooter shot high or low. Since the ‘blocking’ tactic was simply standing up and challenging excessively when possible, it would not matter if the player shot high or low, the goaltender was simply covering the middle of the net. 2) While reacting, high shots were easier saves than low shots. Goaltenders generally stood-up, which make reach pucks with the hands easy and reaching pucks with the feet hard. 3) Goaltenders were still better reacting than blocking on low shots, since players will always shoot for the posts.

We can then use the iterated elimination of dominated strategies technique to find a dominant strategy for each player. In this scenario, goaltenders are always more successful, on average, reacting than blocking. Since goaltenders will always react, shooters acknowledge they are generally better off shooting low than high (while this is just a fabricated example, the fact goaltenders survived without helmets might prove this). Regardless, the point of this exercise demonstrates that goaltenders needed to have the ability to react to shots during this time. These strategies and the expected save percentages are displayed in the matrix below (Figure 1). Remember goaltenders want the highest save percentage strategy, while shooters want to find the lowest.

However, the game of hockey is not as simple as the pure simultaneous-move game we have set up. Offensive players are not shooting in a vacuum. They are often facing defensive pressure or limited to long distance shots, both circumstances limit the ability of offensive players to accurately shoot the puck. If the goaltender believes his team will be able to limit the frequency of high shots to less to 50%, then the goaltenders expected save percentage while blocking is greater than their expected save percentage while reacting.Advances in equipment then allowed the adoption of a new blocking tactic—the butterfly. By dropping to their knees and flaring out their legs, goaltenders were maximising their blocking surface area, particularly along the ice. Equipment was lighter, bigger, and increasingly conducive to the butterfly style, allowing goaltenders to perform at higher levels. Now the same simultaneous-move game described above began to increasingly favour the goaltender. Not only did the butterfly change the way goaltenders blocked, it changed the way they reacted. Goaltenders now tended to react from a butterfly base—dropping down to their knees at the onset of the shot and reacting as they dropped. The effectiveness of the down game now meant shooters were always better off shooting high. In a pure game theory sense, this would suggest players would always shoot high, so goaltenders should still always react. These strategies and the new payoffs are displayed in Figure 2.

This suggests that goaltenders with a good defence, good blocking technique, and modern goaltending equipment are better off blocking. When a goaltender is said to be ‘playing the percentages,’ this suggests the goaltender routinely blocks the majority of the net and forces the shooter to make a perfect shot. This strategy has raised the average performance of goaltenders. However, in a zero-sum game such as hockey, simply maintaining a level of adequate performance will not increase the goaltender’s absolute success, measured in wins and losses. The only way for a goaltender to positively impact their team is to exceed the average, which—as we will see—can be accomplished by defying the norm.

In conclusion, these strategic interactions did not create hard rules for goaltenders or shooters. However, the permeation of advanced tactics has heavily skewed the payoffs toward the goaltender. Goaltenders block more, and shooters shoot high as much as possible. An unspoken equilibrium has been created and maintained at all levels of hockey—thus altering the instinctive strategies employed by both groups.

The ‘Average’ Position

Goaltenders could now simplify their approach to their position, while simultaneously out-performing their historical predecessors. The average NHL save percentage rose from 87.6% in 1982 to 91.6% in 2011.* This rise in success rate would give any goaltender little incentive to break the norm. Imagine an ‘average’ goaltender, posting a save percentage equivalent to the NHL average save percentage each year. The ‘average’ goaltender would put up better numbers each successive year. While they would be perceived to be more valuable—higher personal statistics means a bigger contract, more starts, and a greater reputation—it is entirely conceivable that, despite their statistical improvement, they would not contribute to any more victories. If the goaltender at the other end of the ice is performing just as well as you (on average, of course) then the ‘average’ goaltender will not contribute any extra wins to his team compared to the year before. However, this effect would be difficult to observe over the course of a goaltenders career, and coaches and managers would become enamoured with ‘average’ goaltending, comparing it favourably to the recent past. The ‘success of mediocrity’ encouraged a simplified, safe, and ‘high-percentage’ approach to the position. If you looked like other goaltenders, played like other goaltenders, and performed like other goaltenders, there was little reason to worry about job security. In short, through the evolution of goaltending, goaltenders generally have had very little to gain from breaking the idyllic norm of how a goaltender should look or play like. The implicit equilibrium between shooters and goaltenders has persisted across different eras—most recently centring around a ‘big butterfly, blocking’ game, resulting in historically superior statistics for the ‘average’ goaltender.

The Limits of Success

There is no doubt that now the craft of goaltending is significantly superior to the efforts that preceded it. Goaltenders today are bigger, faster, more athletic, and advanced technically. However, the quest to fulfil the requirement of ‘average’ will be an empty pursuit in absolute terms (wins and losses) to any goaltender. In order to avoid becoming ‘average’ the goaltender must deviate from the strategic equilibrium that primarily consists of large goaltenders simply ‘playing the percentages.’ While goaltenders can exceed the average by simply being even bigger, faster, and more athletic than their peers, this is becoming increasingly difficult. Not only will teams continue to draft goalies for these attributes, there are natural limits to how tall, fast, and coordinated a human being can be. Shooters will also continue to adjust. An extra 2” in height does not necessarily prevent a perfectly placed shot over or under the glove. Recall the over simplified instantaneous move game: shooters will always be better off shooting high and to the posts—when they have time. High-level shooters have evolved to target very specific areas of the net, preying on the predictability of the modern butterfly goalie. However, the shooter will not always have time to attempt the perfect shot, which means the goaltender can revert back to primarily blocking and mediocrity without being exposed.



The Contrarian Position

While the goaltender cannot change his physiology in order to exceed the average, they can (slowly) alter their approach to the game. Remember, the strategic interaction between the goaltender and shooter has become predictable. The goaltender will fill up as much net as possible, forcing the shooter to manufacture a perfect shot, while the shooter will attempt to comply.  If a goaltender were to begin to mix strategies effectively and react some percentage of the time, they would be better off. The shooter has been trained to shoot high (that is their dominant strategy), and goaltenders are better off reacting to high shots than blocking and leaving their arms pinned to their sides. Essentially, by mixing strategies when it is wise, (when the simple block-react instantaneous move model applies) the goaltender can increase their expected save percentage—and exceed the average.

To demonstrate this point we must move away from the abstract and the general, focusing on specific examples. A disproportionate amount of statistical success throughout the ‘butterfly’ era has been the work of unorthodox goaltenders. While an ‘unorthodox’ style has had a negative connotation in the conventional world of goaltending, it is the defectors that have broken through the limits reached by the big, butterfly goaltender. Sub-six-foot Tim Thomas recently broke the modern NHL save percentage record by willing himself to saves and largely defying the established goaltending practice. The save percentage record previously belonged to Dominik Hasek. Like Thomas, Hasek was less than six feet tall and would consistently move toward the puck like no other goaltender in the game. To shooters that have very clear, habitual objectives (shoot high glove or low blocker just over the pad or through his legs if he is sliding, etc.) facing these contrarians led to a historically low shooter success rate. These athletes effectively mixed their strategies between blocking and reacting (their own versions of these strategies, mind you) to keep shooters guessing. Their contrarian approach has been remarkably sustainable as well—Hasek and Thomas have combined to win 8 out of the last 17 Vezina Trophies, despite their NHL careers only overlapping 3 years. By moving further away further the archetypical goaltender, both Thomas and Hasek exceeded the average considerably. It is exceeding the average that causes goaltenders to contribute to victories, the absolute measurement of success for any goaltender.

Consider the correlation between a unique approach and sustained success when accessing the careers of four Calder Trophy winning goaltenders: Ed Belfour, Martin Brodeur, Andrew Raycroft, and Steve Mason. Each began their NHL career in impressive fashion; however, two went on to become generational goaltenders, while the other two will struggle to equal their initial success. This may seem like an unfair comparison, but it is important to understand why it unfair. Both Brodeur and Belfour maintained an elite level of play because they generally defied convention throughout their career. Both played unique styles and were excellent puck handlers. When Belfour entered the league at the very start of the 1990’s his combination of athleticism, intensity, and an advanced understanding of positional play made him formidable. He mastered the butterfly before it was the standard—you could argue the success of Patrick Roy and Belfour helped create the current generation of ‘big, butterfly’ goaltenders. Brodeur has always been different—there has been no comparable goaltender to him throughout his career, just like Thomas or Hasek. He has been the most consistent and celebrated goaltender in NHL history without utilising the most common save tactic employed by his peers—he rarely drops into a true butterfly. Counter-intuitively, despite lacking a standard, universal save movement, he has also been remarkably consistent. Martin Brodeur has mixed his save selection strategies magnificently, preying on shooter programmed to shoot against predictable butterfly practitioners.

Now consider the other rookie standouts: Raycroft and Mason. It is difficult to distinguish their approach to the game from the approach of other ‘average’ professions. Mason is taller than average and catches right, but he does not present a unique challenge to shooters. They are goaltenders with an average, ‘percentage-based’ approach to goaltending. There is nothing note-worthy about the way they play the position. Why the initial success? Both goaltenders likely overachieved (positive deviation from the average) due to a favourable situation and the vague element of surprise. Shooters would soon adjust to the subtleties in the young goaltender’s game.* Personal weaknesses would become exploited and their performance regressed towards the mean. Their rookie years could have been duplicated by a number of other rookie goaltenders, with similar skill and luck. Their ‘average’ size, skill set, and approach to the game have manifested itself in an ‘average’ NHL career. An impressive beginning was nothing more than favourable luck and circumstance—their careers diverged significantly from other Calder-winning goaltenders. Goaltenders that went throughout their career masterfully mixing save selection strategies, by contrast, set the standard for consistency, longevity, and performance.

In conclusion, the modern equilibrium between goaltenders and shooters has been successfully disrupted by the contrarians like Dominik Hasek, Tim Thomas, and Martin Brodeur. The rest have enjoyed the benefits of the ‘big, butterfly goaltender’ doctrine—stopping more pucks on average—but have gained little ground on other ‘average’ goaltenders. These goaltenders are playing a strategy that contributes little to their team because they are more susceptible against the extreme.


The Possibility of the Extreme—The Black Swan Save 

If contrarians exceed the average, it is important to understand how they can do it with remarkable consistency. I believe their unconventional style and willingness to react to shots leaves them better prepared to handle the possibility of the statistically unique shot—which I will call a ‘Black Swan’ opportunity.§ They can always use the butterfly tactic in situations that call for it, while the butterfly-reliant goaltenders struggle to improvise like contrarians. The ‘reaction’ strategy leaves them free to make the unconventional saves necessary to prevent Black Swans from becoming goals.

The position relies on instinct and split second decisions. Reactions and responses to defined situations are drilled into goalies from an increasingly young age. Long before these goaltenders are capable of playing in the NHL, they have generally mastered technical responses to certain, finite situations. Goaltenders may be trained very well to react predictably in trained circumstances, but this leaves the goaltender susceptible to the extreme—breeding mediocrity. In this case, the extreme or Black Swan shot, is the result of 10 position players on the ice, moving at speeds up to 30 miles per hour, chasing an object that can move close to 100 miles per hour. Despite the simple objective and the definitive results of the goaltending position, every shot against them has the potential to create an infinite amount of complexities and permutations. A one-dimensional approach—where the goaltender determines they are better off ‘playing the percentages’—to the position offers the goaltender the opportunity to make a large number of saves, but it does not prepare the goaltender to react favourably to a Black Swan. The problem, then, is not maintaining a predictable level of performance—making the saves ‘you should make’—it is the ability to adjust to the unpredictable and the extreme in order to make a critical save. This is accomplished by reacting to shots a healthy percent of the time.

The real objective of the goaltender is to give up fewer goals than the opposing goaltender. In a low scoring game such as hockey, it is likely one goal against will determine the outcome of any given game. Passively leaving the outcome up to chance is a mistake in my opinion. Aggressiveness and assertiveness are competitive qualities that are compromised by a predominantly butterfly style. By dropping in the butterfly the goaltender is surrendering to whatever unlikely or unlucky shot that may occur. A great play, a seeing-eye shot, or unlikely bounce—the ‘unlikely, undrilled’ occurrences that have the potential to win or lose games—happen randomly. The goaltender must be aggressive and decisive in order to adjust to these situations. These are the shots that cannot be replicated in repetitive drills; they require the creativity and instinctual reaction of an instinctual contrarian.

Goaltending—A Lesson in Randomness

The frequency of the Black Swan shot or goal against is erratic. They can happen at any time. There is little correlation between shots against and goals against on a game-by-game basis. If we assume the amount of Black Swan’s a goaltender faces is roughly proportional to the number of goals given up*— generally the more improbable shots faced, the more goals against—we counter-intuitively observe that the ‘Black Swans’ and the goals they caused occur randomly in a hockey game, largely independent of the number of shots against the goaltender. Taking the 10 busiest goaltenders of the 2010-2011 season, we see that their save percentage generally goes up as they receive more shots against. It does not matter whether the team gives up 20 shots or 40 shots, the random Black Swan occurrences that result in goals will happen just as frequency, regardless of the shots against. In outings where those goaltenders faced more than 40 shots, the average save percentage and shots against were 94.63% and 43.51, respectively. This implies these goaltenders gave up, on average, 2.33 goals per game when facing more than 40 shots. When these same goaltenders faced less than 20 shots, their save percentage was a paltry 82.17% on an average of 14.85 shots. This implies 2.64 goals against per outing where the goaltender faced less than 20 shots.§ Counter-intuitively they fared worse while facing less than half of the shots.

The frequency of the ‘Black Swan’ occurrences that led to goals appears to be largely independent of shots on goal. ‘Playing the percentages’ leaves every goaltender hopelessly exposed to random chance throughout the game. Goaltenders in the world’s best league do no better in absolute terms when they face 20 shots than 40 shots. They are the same goaltenders, they just fall victim to circumstance and luck.

Simply ‘playing the percentages,’ with an emphasis on blocking from the butterfly, leaves the goaltenders fate up to pure chance. No goaltender can attempt to consistently out-perform their peers by playing the percentages—at least, not with certainty. Hoping to block 90% of the net while relying on your team to limit quality opportunities will result in mediocrity. The Black Swan events that lead to goals occur randomly and just as frequently facing 15 shots as 50 shots. This has manifested itself in ‘average’ goaltenders’ performances fluctuating unpredictably from game to game and from season to season. In a game where random luck is prevalent, employing a strategy that struggles to adjust to the complexities of a game as dynamic as hockey will result in erratic and unexplainable outcomes.

The Challenge to the Contrarian

This creates a counter-intuitive result: the prototypical, ‘by the book’ goaltender will likely be subjected to greater fluctuations in performance, despite having the technical mastery of the position that suggests a level of control. Instead, it is the contrarian, with no attachment to the ‘proper’ way to make the save that will achieve more consistent results. The improvisational nature of a Tim Thomas stick save may appear out of control, but his approach to the game will yield more consistent results. The aggressiveness and assertiveness will allow the contrarian to make saves when there is no technical road map to reach the proper position on a Black Swan shot. Consider the attributes necessary the make an incredible save. Physical attributes vary among NHL goaltenders, but not by much. Height, agility, reflexes, and other critical skills for any professional goaltender will cluster around a certain standard. On the other hand, the mental approach to the game can vary between goaltenders by magnitudes. Goaltenders can become robust against the effects of Black Swans by having the creativity to reach pucks ‘technicians’ could not and having the courage to abandon the perceived safety of the butterfly. Decreasing the effects of Black Swan’s would be huge, and there are no theoretical limitations (unlike physical limitations) that exist. In a game containing the possibility of the extreme, it is the contrarian goaltender that will best be able to prevent goals against.

Leaving the safety of the ‘butterfly style’ can be dangerous for a goaltender. Coaches, managers, analysts, and peers will be quick to realise when a goal could have been stopped by a goaltender passively waiting in their butterfly. These ‘evaluators’ and ‘experts’ have subscribed to the ‘average’ goaltender paradigm for over a decade. After game 5 of the 2011 Stanley Cup Final, Roberto Luongo suggested that the only goal of the game against Tim Thomas would have been “an easy save for (him).” Proactively mixing save strategies does leave the contrarian potentially exposed to the unconventional goal against. Improbable, unconventional saves are great, but coaches and managers really only care about goals against. They can handle them if it was not the fault of the goalie—the perfect shot or improbable bounce that prey’s upon the passive butterfly goaltender. Just don’t pass up the opportunity to make an easy save and get scored on, contend the experts (luckily, Thomas was able to put together the greatest season of any goaltender in the modern game, he got a pass). Playing the game like freed from the ‘butterfly-first’ doctrine is a leap of faith, but it gives the goaltender the opportunity to contribute something positive to their team: wins.

Consider the great Martin Brodeur—the winningest goaltender in NHL history has often been discredited for playing behind strong defensive clubs while winning games and championships. However, random Black Swan chances have little regard for the number of shots against, as we have seen.  So why does Martin Brodeur have the most victories of any goaltender in NHL history? I would give a large amount of credit to his ability to make the ‘key save’ on the unlikely chance against. These saves would not necessarily manifest themselves noticeably at the end of the game or in any statistically significant way—rather they are randomly distributed throughout the game, like Black Swan’s are. Remember that, while New Jersey has been traditionally strong defensively, they have averaged 16th in the league in scoring during Brodeur’s tenure. With this inconsistent (and at times lethargic) goal support, Brodeur’s win totals remained remarkably consistent. During his prime he recorded at least 37 victories in 11 consecutive seasons. The low scoring years required extreme focus and competency. Where the game could hinge on one great play or bad bounce, Brodeur preserved victory more than any contemporary by being vigilant against the Black Swan chances. You can make the argument the low shot totals (and the subsequent merely ‘good’ save percentage) led to him being overrated considering his absolute success. However, Black Swan’s are somewhat independent of shots against, and until his detractors understand how three ‘Brodeur-only saves’ were the difference in a 3-2 win in a game where New Jersey gave up only 23 shots, the winningest goaltender of all-time will continue to be regrettably underrated, except for where it counts. No statistical analysis can measure the increased importance of a save to preserve victory compared to a save without that pressure.


I felt it was important to actively think about the strategies that have permeated the goaltending position and the impact it has had on goaltending performance. It was also important to liberate my thinking from too much quantitative analysis, rather focusing on the qualitative relationships between goaltender strategy, the random nature of the position, the goaltenders that consistently exceed the norm, and the goaltenders that will always be products of circumstance. None of this could be done with traditional goaltender metrics, they do not begin the even consider the possibility of the Black Swan opportunity against. Traditional statistics can be manipulated to underrate the winningest goaltender of all-time. Winning is sport’s sole objective, the goaltender always has some influence on winning, so goaltender wins are important. Traditional statistics lead to complacency with ‘average’ goaltending, which is goaltending that adds nothing to the bottom-line—winning. Leaving these statistical constraints behind can help clarify the connection between strategy and the contrarian, then between the contrarian and success.

Based on this philosophical analysis, I believe goaltenders should unsubscribe from the conventional goaltending handbook, aggressively mix their save selection, helpful remaining robust against the inevitable Black Swans opportunities against. This will allow them to exceed the ‘expected’ performance, and ultimately win more games.


* A 4% increase in save percentage is significant; this is analogous to saying goaltenders gave up 48% more goals of the same number of shots in 1982 than 2011.

* While the butterfly style may be generic, each goaltender has relative strengths and weaknesses. NHL shooters will eventually expose these weaknesses unless the goaltenders can successfully vary their strategy (remain unpredictable).

In the ‘modern’ game-theory example, the goaltender would have to react the vast majority of the time to force the shooter to mix between shooting high or low (which is ideal for the goaltender). By doing so the goaltenders can exert their influence on the shooter, opposed to simply accepting that a great shot or lucky bounce will beat them.

  • A term borrowed from Nassim Nicholas Talib and his book The Black Swan: The Impact of the Highly Improbable. Black Swan’s, named after the rare bird, represent the improbable and random occurrences in hockey and in life. Just because we cannot conceive a particular challenge nor have we prepared for it, does not mean it will not happen. ‘Black Swans’ are unpredictable, can have a large impact (a goal), and are the result of an ecosystem that is far too complex to predict (10 players, a puck, and physics create infinite possibilities). Events are weakly explained after the fact (you held your glove too high) but in reality the causes are much deeper and impossible to predict.

* While I would argue some goaltenders are better equipped to handle ‘Black Swan’ opportunities against them, these difficult, unforeseen events will still be approximately proportionate to the amount of goals they give up. NB: Tim Thomas is not included in this list.

This ‘extreme’ case happened 47 times out of the 677 games collectively played.

  • Many of these games saw the goaltender pulled, so the goals against is ‘per appearance’ rather than ‘per game.’ While it may be argued that these goaltender just ‘didn’t have it’ these games, I would argue that more often they faced a cluster of bad luck and improbable chances against them. The total sample size is 60 games.

This attitude may explain the regression in Luongo’s game over the last couple of seasons. He once was a 6’3 goaltender with freakishly long limbs that would reach pucks in unconventional and spectacular ways. Now he views himself as pure positional goaltender that is better off on the goal line than aggressively attacking shots against him. Apparently it is better to look ‘good’ getting scored on multiple times than look ‘bad’ getting scored on once.

The standard deviation is 10 places, basically all over the place, both leading the in goals for and finishing last in goals for.

Hockey Analytics, Strategy, & Game Theory

Strategic Snapshot: Isolating QREAM

I’ve recently attempted to measure goaltending performance by looking at the number of expected goals a goaltender faces compared to the actual goals they actually allow. Expected goals are ‘probabilitistic goals’ based on what we have data for (which isn’t everything): if that shot were taken 1,000 times on the average goalie that made the NHL, how often would it be a goal? Looking at one shot there is variance, the puck either goes in or doesn’t, but over a course of a season summing the expected goals gives a little better idea of how the goaltender is performing because we can adjust for the quality of shots they face, helping isolate their ‘skill’ in making saves. The metric, which I’ll refer to as QREAM (Quality Rules Everything Around Me), reflects goaltender puck-saving skill more than raw save percentage, showing more stability within goalie season.
Goalies doing the splits
Good stuff. We can then use QREAM to break down goalie performance by situations, tactical or circumstantial, to reveal actionable trends. Is goalie A better on shots from the left side or right side? Left shooters or right shooters? Wrist shots, deflections, etc? Powerplay? Powerplay, left or right side? etc. We can even visualise it, and create a unique descriptive look at how each goaltender or team performed.

This is a great start. The next step in confirming the validity of a statistic is looking how it holds up over time. Is goalie B consistently weak on powerplay shots from the left side? Is something that can be exploited by looking at the data? Predictivity is important to validate a metric, showing that it can be acted up and some sort of result can be expected. Unfortunately, year over year trends by goalie don’t hold up in an actionable way. There might be a few persistent trends below, but nothing systemic we can that would be more prevalent than just luck. Why?

Game Theory (time for some)

In the QREAM example, predictivity is elusive because hockey is not static and all players and coaches in question are optimizers trying their best to generate or prevent goals at any time. Both teams are constantly making adjustments, sometimes strategically and unconsciously. As a data scientist, when I analyse 750,000 shots over 10 seasons, I only see what happened, not what didn’t happen. If in one season, goalie A underperformed the average on shots from the left shooters from the left side of the ice that would show up in the data, but it would be noticed by players and coaches quicker and in a much more meaningful and actionable way (maybe it was the result of hand placement, lack of squareness, cheating to the middle, defenders who let up cross-ice passes from right to left more often than expected, etc.) The goalie and defensive team would also pick up on these trends and understandably compensate, maybe even slightly over-compensate, which would open up other options attempting to score, which the goalie would adjust to, and so on until the game reaches some sort of multi-dimensional equilibrium (actual game theory). If a systemic trend did continue then there’s a good chance that that goalie will be out of the league. Either way, trying to capture a meaningful actionable insight from the analysis is much like trying to capture lightning in a bottle. In both cases, finding a reliable pattern in a game there both sides and constantly adjusting and counter-adjusting is very difficult.

This isn’t to say the analysis can’t be improved. My expected goal model has weaknesses and will always have limitations due to data and user error. That said, I would expect the insights of even a perfect model to be arbitraged away. More shockingly (since I haven’t looked at this in-depth, at all), I would expected the recent trend of NBA teams fading the use of mid-range shots to reverse in time as more teams counter that with personnel and tactics, then a smart team could probably exploit that set-up by employing slightly more mid-range shots, and so on, until a new equilibrium is reached. See you all at Sloan 2020.

Data On Ice

The role of analytics is to provide a new lens to look at problems and make better-informed decisions. There are plenty of example of applications at the hockey management level to support this, data analytics have aided draft strategy and roster composition. But bringing advanced analytics to on-ice strategy will likely continue to chase adjustments players and coaches are constantly making already. Even macro-analysis can be difficult once the underlying inputs are considered.
An analyst might look at strategies to enter the offensive zone, where you can either forfeit control (dump it in) or attempt to maintain control (carry or pass it in). If you watched a sizable sample of games across all teams and a few different seasons, you would probably find that you were more likely to score a goal if you tried to pass or carry the puck into the offensive zone than if you dumped it. Actionable insight! However, none of these plays occur in a vacuum – a true A/B test would have the offensive players randomise between dumping it in and carrying it. But the offensive player doesn’t randomise, they are making what they believe to be the right play at that time considering things like offensive support, defensive pressure, and shift length of them and their teammates. In general, when they dump the puck, they are probably trying to make a poor position slightly less bad and get off the ice. A randomised attempted carry-in might be stopped and result in a transition play against. So, the insight of not dumping the puck should be changed to ‘have the 5-player unit be in a position to carry the puck into the offensive zone,’ which encompasses more than a dump/carry strategy. In that case, this isn’t really an actionable, data-driven strategy, rather an observation. A player who dumps the puck more often likely does so because they struggle to generate speed and possession from the defensive zone, something that would probably be reflected in other macro-stats (i.e. the share of shots or goals they are on the ice for). The real insight is the player probably has some deficiencies in their game. And this where the underlying complexity of hockey begins to grate at macro-measures of hockey analysis, there’s many little games within the games, player-level optimisation, and second-order effects that make capturing true actionable, data-driven insight difficult.[1]
It can be done, though in a round-about way. Like many, I support the idea of using (more specifically, testing) 4 or even 5 forwards on the powerplay. However, it’s important to remember that analysis that shows a 4F powerplay is more of a representation of the team’s personnel that elect to use that strategy, rather than the effectiveness of that particular strategy in a vacuum. And team’s will work to counter by maximising their chance of getting the puck and attacking the forward on defence by increasing aggressiveness, which may be countered by a second defenseman, and so forth.

Game Theory (revisited & evolved)

Where analytics looks to build strategic insights on a foundation of shifting sand, there’s an equally interesting forces at work – evolutionary game theory. Let’s go back to the example of the number of forwards employed on the powerplay, teams can use 3, 4, or 5 forwards. In game theory, we look for a dominant strategy first.While self-selected 4 forward powerplays are more effective a team shouldn’t necessarily employ it if up by 2 goals in the 3rd period, since a marginal goal for is worth less than a marginal goal against. And because 4 forward powerplays, intuitively, are more likely to concede chances and goals against than 3F-2D, it’s not a dominant strategy. Neither are 3F-2D or 5F-0D.
Thought experiment. Imagine in the first season, every team employed 3F-2D. In season 2, one team employs a 4F-1D powerplay, 70% of the time, they would have some marginal success because the rest of the league is configured to oppose 3F-2D, and in season 3 this strategy replicates, more teams run a 4F-1D in line with evolutionary game theory. Eventually, say in season 10, more teams might run a 4F-1D powerplay than 3F-2D, and some even 5F-0D. However, penalty kills will also adjust to counter-balance and the game will continue. There may or may not be an evolutionary stable strategy where teams are best served are best mixing strategies like you would playing rock-paper-scissors.[2] I imagine the proper strategy would depend on score state (primarily), and respective personnel.
You can imagine a similar game representing the function of the first forward in on the forecheck. They can go for the puck or hit the defensemen – always going for the puck would let the defenseman become too comfortable, letting them make more effective plays, while always hitting would take them out of the play too often, conceding too much ice after a simple pass. The optimal strategy is likely randomising, say, hitting 20% of the time factoring in gap, score, personnel, etc.

A More Robust (& Strategic) Approach

Even if it seems a purely analytic-driven strategy is difficult to conceive, there is an opportunity to take advantage of this knowledge. Time is a more robust test of on-ice strategies than p-values. Good strategies will survive and replicate, poor ones will (eventually and painfully) die off. Innovative ideas can be sourced from anywhere and employed in minor-pro affiliates where the strategies effects can be quantified in a more controlled environment. Each organisation has hundreds of games a year in their control and can observe many more. Understanding that building an analytical case for a strategy may be difficult (coaches are normally sceptical of data, maybe intuitively for the reasons above), analysts can sell the merit of experimenting and measuring, giving the coach major ownership of what is tested. After all, it pays to be first in a dynamic game such as hockey. Bobby Orr changed the way the blueliners played. New blocking tactics (and equipment) lead to improved goaltending. Hall-of-Fame forward Sergei Fedorov was a terrific defenseman on some of the best teams of the modern era.[3]  Teams will benefit from being the first to employ (good) strategies that other teams don’t see consistently and don’t devote considerable time preparing for.
The game can also improve using this framework. If leagues want to encourage goal scoring, they should encourage new tactics by incentivising goals. I would argue that the best and most sustainable way to increasing goal scoring would be to award AHL teams 3 points for scoring 5 goals in a win. This will encourage offensive innovation and heuristics that would eventually filter up to the NHL level. Smaller equipment or big nets are susceptible to second order effects. For example, good teams may slow down the game when leading (since the value of a marginal goal for is now worth less than a marginal goal against) making the on-ice even less exciting. Incentives and innovation work better than micro-managing.

In Sum

The primary role of analytics in sport and business is to deliver actionable insights using the tools are their disposal, whether is statistics, math, logic, or whatever. With current data, it is easier for analysts to observe results than to formulate superior on-ice strategies. Instead of struggling to capture the effect of strategy in biased data, they should using this to their advantage and look at these opportunities through the prism of game theory: testing and measuring and let the best strategies bubble to the top. Even the best analysis might fail to pick up on some second order effect, but thousands of shifts are less likely to be fooled. The data is too limited in many ways to create paint the complete picture. A great analogy came from football (soccer) analyst Marek Kwiatkowski:

Almost the entire conceptual arsenal that we use today to describe and study football consists of on-the-ball event types, that is to say it maps directly to raw data. We speak of “tackles” and “aerial duels” and “big chances” without pausing to consider whether they are the appropriate unit of analysis. I believe that they are not. That is not to say that the events are not real; but they are merely side effects of a complex and fluid process that is football, and in isolation carry little information about its true nature. To focus on them then is to watch the train passing by looking at the sparks it sets off on the rails.

Hopefully, there will soon be a time where every event is recorded, and in-depth analysis can capture everything necessary to isolate things like specific goalie weaknesses, optimal powerplay strategy, or best practices on the forecheck. Until then there are underlying forces at work that will escape the detection. But it’s not all bad news, the best strategy is to innovate and measure. This may not be groundbreaking to the many innovative hockey coaches out there but can help focus the smart analyst, delivering something actionable.



[1] Is hockey a simple or complex system? When I think about hockey and how to best measure it, this is a troubling question I keep coming back to. A simple system has a modest amount of interacting components and they have clear relationships to other components: say, when you are trailing in a game, you are more likely to out-shoot the other team than you would otherwise. A complex system has a large number of interacting pieces that may combine to make these relationships non-linear and difficult to model or quantify. Say, when you are trailing the pressure you generate will be a function of time left in the game, respective coaching strategies, respective talent gaps, whether the home team is line matching (presumably to their favor), in-game injuries or penalties (permanent or temporary), whether one or both teams are playing on short rest, cumulative impact of physical play against each team, ice conditions, and so on.

Fortunately, statistics are such a powerful tool because a lot of these micro-variables even out over the course of the season, or possibly the game to become net neutral. Students learning about gravitational force don’t need to worry about molecular forces within an object, the system (e.g. block sliding on an incline slope) can separate from the complex and be simplified. Making the right simplifying assumptions we can do the same in hockey, but do so at the risk of losing important information. More convincingly, we can also attempt to build out the entire state-space (e.g different combinations of players on the ice) and using machine learning to find patterns within the features and winning hockey games. This is likely being leveraged internally by teams (who can generate additional data) and/or professional gamblers. However, with machine learning techniques applied there appeared to be a theoretical upper bound of single game prediction, only about 62%. The rest, presumably, is luck. Even if this upper-bound softens with more data, such as biometrics and player tracking, prediction in hockey will still be difficult.

It seems to me that hockey is suspended somewhere between the simple and the complex. On the surface, there’s a veneer of simplicity and familiarity, but perhaps there’s much going on underneath the surface that is important but can’t be quantified properly. On a scale from simple to complex, I think hockey is closer to complex than simple, but not as complex as the stock market, for example, where upside and downside are theoretically unlimited and not bound by the rules of a game or a set amount of time. A hockey game may be 60 on a scale of 0 (simple) to 100 (complex).

[2] Spoiler alert: if you performing the same thought experiment with rock-paper-scissors you arrive at the right answer –  randomise between all 3, each 1/3 of the time – unless you are a master of psychology and can read those around you. This obviously has a closed form solution, but I like visuals better:

[3] This likely speaks more to personnel than tactical, Fedorov could be been peerless. However, I think to football where position changes are more common, i.e. a forgettable college receiver at Stanford switched to defence halfway through his college career and became a top player in the NFL league, Richard Sherman. Julian Edelman was a college quarterback and now a top receiver on the Super Bowl champions. Test and measure.